Part of the Oxford Instruments Group
Automated EDS in situ heating experiment of an iron titanium alloy in SEM

IR Filter for high temperature EDS analysis

Oxford Instruments unique new Energy Dispersive Spectrometry (EDS) IR Filter unlocks high temperature EDS analysis in the Scanning Electron Microscope (SEM). It uses a super light material to block IR radiation and provides good sensitivity for low energy X-rays (Carbon and Boron are detected) allowing high temperature analysis at up to 1200 ̊C. 

Thanks to its novel design, the IR Filter is used only during heating experiments and therefore room temperature EDS analysis is not affected.

Request Pricing Ask a Question

What is in situ heating in the SEM?

In situ heating in the SEM is the capability of performing heating experiments inside the SEM chamber using a dedicated heating stage to characterise materials like metals, alloys, polymers, composites, and ceramics.

Why use in situ testing in the SEM? 

Materials properties vary depending on temperature and mechanical stress. In situ heating and mechanical analysis inside the scanning electron microscope chamber helps understand phenomena ranging from precipitation to phase transformation and thus allows metallurgists and materials scientists to develop new materials with better properties.

Challenges for EDS at high temperature 

A sample heated to high temperatures >500 ̊C in the SEM chamber will emit high intensity IR radiation adding considerable noise to unprotected EDS detectors and making EDS analysis impossible.

Our Solution: Introducing the EDS IR Filter

Unlocking high temperature EDS analysis in the SEM, created with the unique benefits of:

    • Enabling in situ heating experiments at up to 1200 ̊C
    • Providing good low energy X-ray transmission (C, B and O are detected)
    • No effects at room temperature 
    • Easy to use, giving more confidence to use EDS at the highest temperatures 
    • Possible retrofit to existing detectors 
    With IR Filter
    Spectrums comparing EDS analysis at high temperature with IR Filter in SEM.
    Without IR Filter
    Spectrums comparing EDS analysis at high temperature without IR Filter in SEM.
    Compared spectrums at high temperature with and without EDS IR Filter
    Illustration of the IR Filter Flap system closed
    Illustration of the IR Filter Flap system open
    Illustration of the EDS IR Filter mechanism

    The IR Filter is designed to be used in two positions

    • Fully inserted for conventional room temperature analysis
    • Retracted behind the IR Filter Flap for high temperature EDS

    Which EDS detectors are compatible with the IR filter? 

    The new IR Filter is available with new Ultim Max detectors. It can also be retrofitted to your existing Ultim Max or X-Max detector.

    Large area Ultim Max EDS detectors provide unparalleled speed and sensitivity without comprising on quality, which is crucial for direct observation of chemical transformations during in situ heating experiments.

    Video showing an automated EDS and EBSD in situ heating experiment of an iron titanium alloy in SEM, shows the phase transformation of Ti alpha phase to beta phase.


    The IR Filter unlocks EDS high temperature analysis which is crucial to understanding phenomena like precipitation, phase transformation, diffusion, and segregation in a large range of materials like metals, alloys, ceramics, composites, and polymers. It can also be used in combination with EBSD enabling a full characterisation of the microstructure and chemistry of the material.

    This example shows a combined high temperature EDS and EBSD experiment in a Fe-Ti alloy. The sample was heated to 900°C and then cooled to 500°C. The video shows a direct observation of Fe diffusing in the matrix and then Ti phase transformation from the alpha to beta phase.

    Sample courtesy of Manchester University

    Compatible with....